Section 3.6 The Squeeze Theorem
ΒΆTheorem 3.48. Squeeze Theorem.
Suppose that g(x) \le f(x) \le h(x) for all x close to a but not equal to a\text{.} If \ds\lim_{x\to a}g(x)=L=\lim_{x \to a}h(x)\text{,} then \ds\lim_{x\to a}f(x)=L\text{.}
Theorem 3.49. Two Special Trig Limits.
Example 3.50. Limit of Other Trig Functions.
Compute the following limit \ds\lim_{x\to 0}\frac{\sin 5x\cos x}{x}\text{.}
We have
since \(\cos(0)=1\) and \(\ds{\lim_{x\to 0}\frac{\sin 5x}{5x}=1}\text{.}\)
Example 3.51. Limit of Other Trig Functions.
Compute the following limit: \ds\lim_{x\to 0}\frac{\tan^3 2x}{x^2\sin 7x}\text{.}
Recall that the \(\tan^3(2x)\) means that \(\tan(2x)\) is being raised to the third power.
Example 3.52. Applying the Squeeze Theorem.
Compute the following limit: \ds\lim_{x\to 0^+}x^3\cos\left(\frac{1}{\sqrt{x}}\right)\text{.}
We use the Squeeze Theorem to evaluate this limit. We know that \(\cos\alpha\) satisfies \(-1\leq\cos\alpha\leq 1\) for any choice of \(\alpha\text{.}\) Therefore we can write:
Since \(x\to 0^+\) implies \(x>0\text{,}\) multiplying by \(x^3\) gives:
But using our rules we know that
and the Squeeze Theorem says that the only way this can happen is if
Theorem 3.53. Monotone Limits.
If f(x)\leq g(x) when x is near a (except possibly at a) and the limits of f and g both exist as x approaches a\text{,} then \ds\lim_{x\to a}f(x)\leq\lim_{x\to a}g(x)\text{.}
Exercises for Section 3.6.
Exercise 3.6.1.
Compute the following limits.
-
\(\ds\lim_{x\to 0} {\sin (5x)\over x}\)
AnswerSolution\(5\)Recall that \(\lim\limits_{x\to 0} \frac{\sin(x)}{x} = 1\text{.}\) We will use this fact to find the desired limit by making a suitable subsitution. Let \(w = 5x\text{.}\) Then
\begin{equation*} \begin{split} \lim\limits_{x\to 0} \frac{\sin(5x)}{x} \amp= \lim\limits_{w\to 0} \frac{\sin(w)}{w/5} \\ \amp= \lim\limits_{w\to 0} 5\frac{\sin(w)}{w} = 5(1) = 5.\end{split} \end{equation*} -
\(\ds\lim_{x\to 0 } {\sin(7x)\over\sin (2x)}\)
Answer\(7/2\) -
\(\ds\lim_{x\to 0 } {\cot (4x) \over\csc (3x)}\)
Answer\(3/4\) -
\(\ds\lim_{x\to 0 } {\tan x\over x}\)
AnswerSolution\(1\)First, rewrite \(\tan(x)\) as \(\frac{\sin(x)}{\cos(x)}\text{.}\) Then
\begin{equation*} \begin{split} \lim\limits_{x \to 0} \frac{\tan(x)}{x} \amp= \lim\limits_{x \to 0} \frac{\sin(x)}{x\cos(x)}\\ \amp = \lim\limits_{x \to 0} \left(\frac{\sin(x)}{x}\frac{1}{\cos(x)}\right)\\ \amp = \lim\limits_{x \to 0} \frac{\sin(x)}{x} \lim\limits_{x \to 0}\frac{1}{\cos(x)}.\end{split} \end{equation*}As \(x \to 0\text{,}\) \(\cos(x) \to 1\) and \(\frac{\sin(x)}{x} \to 1\text{.}\) Since both limits exist, we get by the limit laws that
\begin{equation*} \lim\limits_{x \to 0} \frac{\tan(x)}{x} = 1. \end{equation*} -
\(\ds\lim_{x\to \pi/4} {\sin x-\cos x \over\cos (2x)}\)
Answer\(-\sqrt2/2\)
Exercise 3.6.2.
For all \(x\geq 0\text{,}\) \(4x-9 \leq f(x) \leq x^2 - 4x +7\text{.}\) Find \(\ds\lim_{x\to4}f(x)\text{.}\)
AnswerWe are given that \(4x-9\leq f(x) \leq x^2-4x+7\) for all \(x \geq 0\text{.}\) Therefore, by the Squeeze Theorem,
Thus, \(\lim\limits_{x\to 4} f(x) = 7\text{.}\)
Exercise 3.6.3.
For all \(x\text{,}\) \(2x \leq g(x) \leq x^4 - x^2 +2\text{.}\) Find \(\ds\lim_{x\to1}g(x)\text{.}\)
AnswerSince \(2x \leq g(x) \leq x^4 - x^2+2\text{,}\) we have
So, by the Squeeze Theorem, \(\lim\limits_{x\to 1} g(x) =2\text{.}\)
Exercise 3.6.4.
Use the Squeeze Theorem to show that \(\ds\lim_{x\to0} x^4 \cos(2/x)=0\text{.}\)
SolutionWe know that \(-1 \leq \cos\left(\frac{2}{x}\right) \leq 1\text{,}\) and so \(-x^4 \leq \cos \left(\frac{2}{x}\right)\leq x^4\text{.}\) Hence, by the Squeeze Theorem,
So we conclude that \(\lim\limits_{x\to 0} \cos \left(\frac{2}{x}\right) = 0\text{.}\)
Exercise 3.6.5.
Find the value of \(\lim\limits_{x\to\infty}\dfrac{3x+\sin x}{x+\cos x}\text{.}\) Justify your steps carefully.
AnswerWe know that
for all \(x\text{,}\) and
Therefore
so by the Squeeze Theorem,
Thus, \(\lim\limits_{x\to \infty} \dfrac{3x+\sin x}{x+\cos x} = 3\text{.}\)